هیدروژن در نقطه جوش

 

 

مقدمه

وقتی اتم هیدروژن به دو یا چند اتم دیگر پیوند شده باشد، یک پیوند هیدروژنی وجود دارد. این تعریف اشاره بر این دارد که پیوند هیدروژنی نمی‌تواند یک پیوند کووالانسی عادی باشد، زیرا اتم هیدروژن تنها یک اوربیتال (1S) در سطح انرژی به قدر کافی پایین دارد که درگیر تشکیل پیوند کووالانسی شود.

 

جاذبه بین مولکولی و پیوند هیدروژنی

جاذبه بین مولکولی در برخی از ترکیبات هیدروژن‌دار بطور غیر عادی قوی است. این جاذبه در ترکیباتی مشاهده می‌شود که در آنها بین هیدروژن و عناصری که اندازه کوچک و الکترونگاتیوی زیاد دارند، پیوند هیدروژنی وجود دارد. در این ترکیبات ، اتم عنصر الکترونگاتیو چنان جاذبه شدیدی بر الکترونهای پیوندی اعمال می‌کند که در نتیجه آن ، هیدروژن دارای بار مثبت قابل ملاحظه +δ می‌گردد. هیدروژن در این حالت ، تقریبا به صورت یک پروتون بی‌حفاظ است، زیرا این عنصر فاقد الکترون پوششی است. اتم هیدروژن یک مولکول و زوج الکترون غیر مشترک مولکول دیگر ، متقابلا همدیگر را جذب می‌کنند و پیوندی تشکیل می‌شود که به پیوند هیدروژنی مرسوم است. هر اتم هیدروژن قادر است تنها یک پیوند هیدروژنی تشکیل دهد.

 

نقطه جوش و پیوند هیدروژنی

ترکیباتی که پیوند هیدروژنی دارند، خواص غیر عادی از خود نشان می‌دهند. تغییرات نقاط جوش در مجموعه ترکیبات SnH4 , GeH4 , SiH4 , CH4 مطابق روال پیش بینی شده برای ترکیبات است نیروهای بین مولکولی آنها منحصر به نبروهای لاندن است. نقطه جوش در این مجموعه با افزایش اندازه مولکولی ، زیاد می‌شود. ترکیبات هیدروژنی عناصر گروه چهار اصلی ، مولکولهای ناقطبی هستند. اتم مرکزی هر مولکول فاقد زوج الکترون غیر مشترک است. در گروههای پنج ، شش و هفت اصلی نیروهای دو قطبی - دوقطبی به نیروهای لاندن در چسباندن مولکولها به یکدیگر کمک می‌کند. ولی نقطه جوش نخستین عنصر هر مجموعه (NH3,H2O , HF) بطور غیر عادی بالاتر از نقاط جوش سایر اعضای آن مجموعه است. پیوند هیدروژنی در هر یک از این سه ترکیب ، جدا شدن مولکولها را از مایع مشکلتر می‌کند.

 

سایر خواص غیر عادی مربوط به پیوند هیدروژنی

ترکیباتی که مولکولهای آنها از طریق پیوند هیدروژنی به همدیگر پیوسته‌اند، علاوه بر دارا بودن نقاط جوش بالا ، بطور غیرعادی در دمای بالا ذوب می‌شوند و آنتالپی تبخیر ، آنتالپی ذوب و گرانروی آنها زیاد است.

 

 

شروط تشکیل پیوند هیدروژنی قوی

مولکولی که پروتون را برای تشکیل پیوند هیدروژنی در اختیار می‌گذارد (مولکول پروتون دهنده) باید چنان قطبیتی داشته باشد که بار +δ اتم هیدروژن نسبتا زیاد باشد. افزایش قدرت پیوند هیدروژنی به ترتیب N-H.....N

 

اتم مولکول پروتون گیرنده که زوج الکترون لازم برای تشکیل پیوند هیدروژنی را در اختیار می‌گذارد، باید نسبتا کوچک باشد. پیوند هیدروژنی واقعا موثر یا قوی فقط در ترکیبات فلوئور ، اکسیژن و نیتروژن تشکیل می‌شوند. ترکیبات کلر پیوند هیدروژنی ضعیف تشکیل می‌دهند و این خصلت ، با توجه به تغییر جزئی نقطه جوش HCl پیداست. الکترونگاتیوی کلر تقریبا با نیتروژن برابر است. ولی چون اتم کلر بزرگتر از اتم نیتروژن است، پراکندگی ابر الکترونی در اتم کلر بیش از اتم نیتروژن می‌باشد.

مقایسه پیوند هیدروژنی در آب و هیدروژن فلوئورید

تاثیر پیوند هیدروژنی به نقطه جوش آب بیش از هیدروژن فلوئورید است. اگر چه قدرت پیوند O−H…O در حدود 2.3 قدرت پیوند F_H…F است، ولی تاثیر فوق مشاهده می‌شود. بطور متوسط ، تعداد پیوندهای هیدروژنی به ازای هر مولکول در H2O دو برابر آن در HF است. اتم اکسیژن در هر مولکول آب ، با دو اتم هیدروژن پیوند دارد و دارای دو زوج الکترون آزاد غیر مشترک است. اتم فلوئور در مولکول هیدروژن فلوئورید ، سه زوج الکترون آزاد دارد که می‌توانند با اتمهای هیدروژن پیوند تشکیل دهند ولی فقط دارای یک اتم هیدروژن است که می‌تواند با ان پیوند هیدروژنی تشکیل دهد.

 

پیوند هیدروژنی و بلور یخ

پیوند هیدروژنی در آب به مقدار خیلی زیاد بر روی سایر خواص آن نیز تاثیر می‌گذارد. آرایش چهار وجهی اتمهای هیدروژن و زوج الکترونهای غیر مشترک اکسیژن در آب ، سبب می‌شوند که پیوندهای هیدروژنی بلور یخ دارای چنین آرایشی باشد و منبع به ساختار گشوده بلور یخ می‌شوند. به همین علت چگالی یخ نسبتا کم است. در نقطه انجماد آب ، مولکولها به هم نزدیکترند و به همین علت و بطور غیر متعارف چگالی آب بیشتر از چگالی یخ است. باید توجه داشت که مولکولهای H2O در حالت مایع توسط پیوندهای هیدروژنی به هم پیوسته‌اند ولی میزان این پیوستگی و استحکام آن در حالت مایع کمتر از جامد (یخ) است.

 

پیوند هیدروژنی و انحلال پذیری ترکیبات مختلف

با توجه به پیوند هیدروژنی می‌توان انحلال پذیری غیر منتظره برخی ترکیبات حاوی اکسیژن ، نیتروژن و فلوئور را در برخی حلالهای هیدروژن‌دار بویژه آب ، توجیه کرد. مثلا آمونیاک (NH3) و متانول (CH3OH) با تشکیل پیوندهای هیدروژنی در آب حل می‌شوند. علاوه بر این ، برخی آنیونهای اکسیژن‌دار (مانند یون سولفات ، 42+SO) ، با تشکیل پیوند هیدروژنی در آب حل می‌شوند.

 

نقش پیوند هیدروژنی در سیستمهای زنده

پیوند هیدروژنی در تعیین ساختار و خواص مولکولهای سیستمهای زنده نقش اساسی دارد. اجزای مارپیچ آلفا در ساختار پروتئینها و اجزای مارپیچ دوگانه در ساختمان DNA توسط پیوند هیدروژنی به هم می‌پیوندند تشکیل و گسسته شدن پیوندهای هیدروژنی در تقسیم یاخته و سنتز پروتئینهای آن دارای اهمیت اساسی است.

 

کشش سطحی

حتما تاکنون ایستادن حشرات را در سطح آب رودخانه‌ها دیده‌اید. علت این امر و پیوند هیدروژنی بین مولکولهای آب سطح رودخانه و ایجاد کشش سطحی و در نتیجه یک لایه به هم پیوسته و تور مانند در سطح آب است که وزن پاهای نازک حشرات را می‌تواند تحمل کند.

 

 

 

 

جاذبه بین مولکولی دربرخی از ترکیبات هیدروژن‌دار بطور غیرعادی قوی است. این جاذبه در ترکیباتی مشاهده می‌شود که درآنها بین هیدروژن و عناصری که اندازه کوچک و الکترونگاتیویته زیاد دارند، پیوند هیدروژنی وجود دارد. پیوند هیدروژنی نه تنها بین مولکولهای یک نوع ماده ، بلکه بین مولکولهای دو ماده متفاوت که توانایی تشکیل پیوند هیدروژنی را دارند نیز برقرار می‌شود.

 

نحوه تشکیل پیوند هیدروژنی

پیوند هیدروژنی بر اثر جاذبه اتم هیدروژن اندک مثبت موجود در یک مولکول و اتم بسیار الکترونگاتیو  موجود در مولکول دیگر (یا در محل دیگر همان مولکول اگر مولکول به قدر کافی بزرگ باشد که بتواند روی خود خم شود) تولید می‌گردد. جا به جا شدن یک جفت الکترون به سمت عنصر بسیار الکترونگاتیو نیتروژن ، اکسیژن یا فلوئور موجب می‌شود که این اتمها دارای بار منفی جزئی شوند.

 

در این صورت پیوند هیدروژنی پلی است میان دو اتم شدیدا الکترونگاتیو با یک اتم هیدروژن که از طرفی بطور کووالانسی با یکی از اتمهای الکترونگاتیو و از طرف دیگر بطور الکترواستاتیکی (جاذبه مثبت به منفی) با اتم الکترونگاتیو دیگر پیوند یافته است. استحکام پیوند هیدروژنی یک‌دهم تا یک‌پنجاهم قدرت یک پیوند کوالانسی متوسط است.

شرایط تشکیل پیوند هیدروژنی

بالا بودن الکترونگاتیوی اتمهای متصل به هیدروژن: برهمین اساس است که فلوئور (الکترونگاتیوترین عنصر) ، قویترین پیوند هیدروژنی و اکسیژن (الکترونگاتیوتر از نیتروژن) ، پیوند هیدروژنی قویتری درمقایسه با نیتروژن تشکیل می‌دهد. همچنین بار مثبت زیاد بر روی اتم هیدروژن ، زوج الکترون مولکول دیگر را بشدت جذب می‌کند و کوچک بودن اندازه اتم هیدروژن سبب می‌شود که ملکول دوم بتواند به آن نزدیک شود.

 

 

کوچک بودن اتمهای متصل به هیدروژن : پیوند هیدروژنی واقعا مؤثر فقط در ترکیبات فلوئور ، اکسیژن و نیتروژن تشکیل می‌شود. با وجود اینکه دو اتم نیتروژن و کلر ، الکترونگاتیوی برابر دارند، چون اتم کلر از اتم نیتروژن بزرگتر است بر خلاف نیتروژن ، کلر پیوند هیدروژنی ضعیفی تشکیل می‌دهد.

توجیه خواص غیرعادی برخی از مواد

وجود خواص غیرعادی برخی از مواد در حالت جامد یا مایع از جمله بالا بودن دماهای ذوب و جوش ، نشان می‌دهد که نیروهای جاذبه بین مولکولی در آنها به اندازه‌ای زیاد است که نمی‌توان آن را به تأثیرهای متقابل ضعیف بین مولکولی نسبت داد. آشناترین این نوع مواد ، فلوئورید هیدروژن ، آب و آمونیاک است که بسیاری از خواص آنها از جمله دماهای جوش و ذوب آنها از دماهای جوش و ذوب ترکیبهای مشابه خود ، برای مثال  بطور غیرمنتظره‌ای بالاتر است.

 

شاید تصور شود که علت این وضعیت غیر عادی ، قطبیت به نسبت زیاد این مولکولهاست. البته تا اندازه‌ای همین طور است. اما بررسی دقیق این پدیده غیر عادی نشان می‌دهد که باید نیروی جاذبه قویتر از نیروهای جاذبه دوقطبی _ دوقطبی بین مولکولهای آنها برقرار باشد.

 

اگر به ساختار الکترونی مولکولهای  توجه شود، می‌توان به موردهای مشترک بین آنها پی برد. این وجه اشتراک ، وجود دست کم یک پیوند کوالانسی با اتم هیدروژن و یک اوربیتال هیبریدی ناپیوندی دو الکترونی اتم مرکزی بسیار الکترونگاتیو در هر یک از آنهاست.

 

اتمهای  الکترونگاتیوی بالایی دارند با هیدروژن پیوند کوالانسی بشدت قطبی بوجود می‌آورند، بطوری که هیدروژن به میزان قابل توجهی خصلت یک پروتون را پیدا می‌کند. جفت الکترون ناپیوندی و قابل واگذاری روی اتم الکترونگاتیو H ، این امکان را پدید می‌آورد که اتم هیدروژن در نقش پل ، اتم‌های الکترونگاتیو دو مولکول را به یکدیگر متصل کند و نیروی جاذبه‌ بین مولکولی بوجود می‌آید که به پیوند هیدروژنی مرسوم است.

 

خواص ترکیبات دارای پیوند کووالانسی

ترکیباتی که مولکولهای آنها از طریق پیوند هیدروژنی به همدیگر پیوسته‌اند، علاوه بر دارا بودن نقاط جوش بالا ، بطور غیرعادی در دمای بالا ذوب می‌شوند و آنتالپی تبخیر ، آنتالپی ذوب و گرانروی آنها زیاد است.

 

علت شناور بودن یخ

یخ روی آب شناور می‌ماند، زیرا به هنگام انجماد ، منبسط می‌شود. سبب این انبساط پیوند هیدروژنی میان مولکول‌های خمیده آب است ساختار خمیده یا زاویه‌ای مولکول آب ناشی از آرایش چهار وجهی چهار جفت الکترون در لایه ظرفیت یک اتم است. ساختار زاویه‌ای مولکول آب و پیوند هیدروژنی میان مولکولهای آب به آن معنی است که هر مولکول آب می‌تواند حداکثر با چهار مولکول آب دیگر پیوند هیدروژنی داشته باشد.

 

پس آب مایع را می‌توان به صورت خوشه‌هایی از مولکولهای آب تصورکرد، خوشه‌هایی که با پیوند هیدروژنی از مولکولهای آب ساخته شده‌اند و دائم در حال حرکتند. شمار مولکولها در هر خوشه و سرعت حرکت خوشه‌ها به دما بستگی دارد. با سرد شدن آب ، مجموعه‌هایی از مولکولهای آب که بسرعت در حرکت‌اند، کند می‌شوند و در نقطه انجماد به یکدیگر قلاب شده ساختمان سه بعدی منبسط شده‌ای را بوجود می‌آورند. این ساختمان گسترده‌تر موجب می‌شود که تراکم یخ کمتر از آب باشد.

 

ذوب شدن یخ در حدود 15% انرژی پیوند‌های هیدروژنی را می‌شکند و این امر سبب فرو ریختن ساختار می‌شود. در نتیجه مایعی متراکم حاصل می گردد.

 

 

 

چرا نقطه جوش آب بالا است؟

خاصیت عجیب دیگر آب ، نقطه جوش نسبتا زیاد آن است. تقریبا تمام ترکیبات هیدروژن‌دار مجاور اکسیژن و اعضای خانواده آن یعنی  در دمای اتاق به حالت گازی هستند. اما آب مایع است. برای آنکه یک مولکول به حالت بخار در آید، باید انرژی جذب کند تا بتواند خود را از قید مولکولهای دیگر آزاد کند. چون آب مایع با پیوند هیدروژنی به صورت خوشه‌هایی از مولکول‌ها در می‌آید، برای شکسته شدن پیوند‌های هیدروژنی آن ، انرژی زیادی لازم است.

 

اما همه پیوندهای هیدروژنی شکسته نمی‌شوند و خوشه‌هایی از مولکولهای آب حتی در نزدیکی 1000 درجه سانتیگراد هنوز وجود دارند. وقتی آب گرم می‌شود، آشفتگی گرمایی پیوند هیدروژنی را می‌گسلد تا آنکه در بخار آب ، فقط جزء کوچکی از شمار پیوندهای هیدروژنی موجود در آب مایع یا جامد باقی می‌ماند. اگر پیوند محکم میان مولکولی از قبیل پیوند هیدروژنی وجود نداشته باشد، مواد معمولا بنا به جرم مولکولی خود به جوش می‌آیند.

 

جرم‌های مولکولی بزرگتر برای جوش آمدن به دمای زیادتری نیازمندند. عمدتا به این دلیل که ابرهای الکترونی بزرگتر آسانتر و پیچیده می‌شوند و این امر ، منجر به نیروهای لاندن بین مولکولی قویتر می‌شود.

 

کاربردهای پیوند هیدروژنی

پیوندهای هیدروژنی در بسیاری از مواد یافت می‌شوند. پدیده‌هایی از قبیل چسبناک شدن آب‌نبات سفت ، دیرتر خشک شدن الیاف پنبه‌ای از الیاف نایلونی‌ ، نرم شدن پوست با نایلون ، ناهنجارهای ظاهری در ماهیت آب ، همگی ناشی از همین پیوندهای هیدروژنی است.

 

پیوند هیدروژنی در تعیین ساختار و خواص مولکولهای سیستم‌های زنده نقش اساسی دارد. اجزای مارپیچ آلفا در ساختار پروتئین‌ها و اجزای مارپیچ دوگانه در ساختار DNA توسط پیوند هیدروژنی بهم می‌پیوندند. تشکیل و گسسته شدن پیوندهای هیدروژنی در تقسیم یافتن و سنتز پروتئین‌ها توسط آن دارای اهمیت اساسی است.

هیدروژن سبک‌ترین عنصر شیمیایی بوده با معمول‌ترین ایزوتوپ آن که شامل تنها یک پروتون و الکترون است. در شرایط فشار و دمای استاندارد هیدروژن یک گاز،H۲</sub>، دو اتمی با نقطه جوش ۲۰.۲۷° K و نقطه ذوب ۱۴.۰۲° K را میسازد. در صورتیکه این گاز تحت فشار فوق العاده بالایی، مانند شرایطی که در مرکز غولهای گازی وجود دارد، قرار گیرد مولکولها ماهیت خود را از دست داده و هیدروژن بصورت فلزی مایع در می‌آید. (رجوع شود به هیدروژن فلزی). اما در فشارهای بسیار پایین مانند شرایطی که در فضا یافت می‌شود، به این علت که هیچ راهی برای ترکیب اتمهایش وجود ندارد، هیدروژن تمایل دارد تا بصورت اتم‌های مجزا در آمده؛ابرهای H۲ (هیدروژنی) تشکیل می‌شود که به شکل گیری ستارگان نیز مرتبط است.

 

این عنصر نقش بسیار حیاتی در تأمین انرژی جهان از طریق واکنش پروتون-پروتون و چرخه کربن-نیتروژن به عهده دارد(اینها فرآیندهای هم جوشی هسته‌ای هستند که با ترکیب دو اتم هیدروژن به یک اتم هلیم، مقدار بسیار عظیمی از انرژی آزاد می‌کنند.)

 

ژن سبک‌ترین عنصر شیمیایی بوده با معمول‌ترین ایزوتوپ آن که شامل تنها یک پروتون و الکترون است. در شرایط فشار و دمای استاندارد هیدروژن یک گاز،H۲</sub>، دو اتمی با نقطه جوش ۲۰.۲۷° K و نقطه ذوب ۱۴.۰۲° K را میسازد. در صورتیکه این گاز تحت فشار فوق العاده بالایی، مانند شرایطی که در مرکز غولهای گازی وجود دارد، قرار گیرد مولکولها ماهیت خود را از دست داده و هیدروژن بصورت فلزی مایع در می‌آید. (رجوع شود به هیدروژن فلزی). اما در فشارهای بسیار پایین مانند شرایطی که در فضا یافت می‌شود، به این علت که هیچ راهی برای ترکیب اتمهایش وجود ندارد، هیدروژن تمایل دارد تا بصورت اتم‌های مجزا در آمده؛ابرهای H۲ (هیدروژنی) تشکیل می‌شود که به شکل گیری ستارگان نیز مرتبط است.

 

این عنصر نقش بسیار حیاتی در تأمین انرژی جهان از طریق واکنش پروتون-پروتون و چرخه کربن-نیتروژن به عهده دارد(اینها فرآیندهای هم جوشی هسته‌ای هستند که با ترکیب دو اتم هیدروژن به یک اتم هلیم، مقدار بسیار عظیمی از انرژی آزاد می‌کنند.)

 

کاربردها

 

به مقدار بسیار زیادی هیدروژن در فرآیند هابر (Haber Process) صنعت نیاز است، مقدار قابل توجهی در برای تولید آمونیاک، هیدروژنه کردن چربی‌ها و روغن‌ها، و تولید متانول. سایر مواردی که نیازمند هیدروژن است عبارت‌اند از:

 

آلکیل زدایی آبی (هیدرودیلکیلاسیون hydrodealkylation)، گوگردزدایی آبی (هیدرودیسولفوریزاسیون، hydrodesulfurization) و هیدروکرکینک (hydrocracking)

تولید اسید هیدروکلریک،جوشکاری،سوخت‌های موشک و احیاء سنگ معدن فلزی

هیدروژن مایع در تحقیقات سرما‌شناسی مانند مطالعات ابررسانایی بکار می‌رود.

تریتیوم که در رآکتورهای اتمی تولید می‌شود در ساخت بمبهای هیدروژنی مورد استفاده قرار می‌گیرد.

هیدروژن چهارده و نیم بار از هوا سبکتر است و سابقا به‌عنوان عامل بالا برنده در بالون‌ها و کشتی‌های هوایی مورد استفاده قرار می‌گرفت تا وقتیکه فاجعه هیندنبرگ ثابت کرد که استفاده از این گاز برای این منظور بسیار خطرناک است.

دوتریوم به‌عنوان یک کند کننده جهت کاهش حرکت نوترونها در فعالیت‌های هسته‌ای مورد استفاده قرار می‌گیرد، و ترکیبات دوتریوم در شیمی و زیست‌شناسی در مطالعات تأثیرات ایزوتوپ، مورد استفاده وافع می‌شوند.

تریتیوم که یک ایزوتوپ طبقه بندی شده در علوم زیست‌شناسی است که به‌عنوان یک منبع تشعشع در رنگهای نورانی کاربرد دارد.

هیدروژن می‌تواند در موتورهای درون سوز سوخته شود و یا در پیلهای هیدروژنی انرژی بصورت برق تولید کند.تاکنون چند خودرو آزمایشی توست شرکتهای مختلف اتومبیل سازی از جمله BMW(موتور گرمایی) و Mercedes Benz ،Toyota ،Opel و ... (پیل هیدروژنی) تولید شدند. پیل‌های سوختی هیدروژنی، به‌عنوان راه کاری برای تولید توان بالقوه ارزان و بدون آلودگی، مورد توجه قرار گرفته است.

 

پیدایش

 

هیدروژن فراوانترین عنصر در جهان است بطوریکه ۷۵٪ جرم مواد طبیعی از این عنصر ساخته شده و بیش از ۹۰٪ اتم‌های تشکیل دهنده آنها اتم‌های هیدروژن است.

 

این عنصر به مقدار زیاد و به وفور در ستارگان و سیارات غولهای گازی یافت می‌شود. به نسبت فراوانی زیاد آن در جاهای دیگر، هیدروژن در اتمسفر زمین بسیار رقیق است(۱ ppm برحسب حجم). متعارف‌ترین منبع برای این عنصر در زمین آب است که از دو قسمت هیدروژن و یک قسمت اکسیژن (H۲O) ساخته شده است.

 

منابع دیگر عبارت‌اند از بیشترین اشکال مواد آلی که در اندام تمام موجودات زنده شناخته شده وجود دارند، زغال،سوخت فسیلی و گاز طبیعی. متان (CH۴)، که یکی از محصولات فرعی فساد ترکیبات آلی است که اهمیت منابع آن رو به افزایش است.

 

هیدروژن از چندین راه مختلف بدست می‌آید، عبور بخار از روی کربن داغ، تجزیه هیدروکربن به‌وسیله حرارت، واکنش هیدروکسید سدیم یا پتاسیم بر آلومینیوم، الکترولیز آب یا از جابجایی آن در اسیدها توسط فلزات خاص.

 

هیدروژن تجاری در حجمهای زیاد معمولاً به‌وسیله تجزیه گاز طبیعی تولید می‌شود.

 

حالتها

 

در شرایط عادی گاز هیدروژن ترکیبی از دو نوع متمایز مولکول است که با هم از نظر جهت چرخش الکترون‌ها و هسته تفاوت دارند. این دو شکل به نام ارتو- و پارا- هیدروژن معروفند. (این مورد با ایزوتوپ‌ها فرق می‌کند به پاراگراف بعد توجه کنید.) در شرایط استاندارد هیدروژن معمولی ترکیبی از ۲۵٪ شکل پاراو ۷۵٪ شکل ارتو است. شکل ارتو را نمی‌توان بصورت حالت خالص آن تهیه کرد. این دو مدل هیدروژن از نظر انرژی با هم متفاوتند که این مسیله موجب می‌گردد، تا خصوصیات فیزیکی آنها کمی متفاوت باشد. مثلاً نقطه ذوب و جوش پاراهیدروژن تقریباً ۰.۱ K ° پایین تر از ارتوهیدروژن است. (به اصطلاح شکل عادی.)

 

ایزوتوپها

 

پروتیوم، معمولی‌ترین ایزوتوپ هیدروژن فاقد نوترون است گرچه دو ایزوتوپ دیگر به نام دوتریوم دارای یک نوترون و تریتیوم رادیو اکتیویته دارای دو نوترون، وجود دارند. دو ایزوتوپ پایدار هیدروژن پروتیوم(H-۱) و دیتریوم(D، H-۲) هستند. دیتریوم شامل ۰.۰۱۸۴-۰.۰۰۸۲٪ درصد کل هیدروژن است (IUPAC)؛ نسبتهای دیتریوم به پروتیوم با توجه به استاندارد مرجع آب VSMOW اعلام می‌گردد. تریتیوم(T یا H-۳)، یک ایزوتوپ پرتوزا (رادیواکتیو) دارای یک پرتون و دو نوترون است. هیدروژن تنها عنصری است که ایزوتوپ‌های آن اسمی مختلفی دارند.

 

 

اولین عنصر شیمیایی جدول تناوبی هیدروژن است که گازی بی رنگ و بی مزه بوده و با نماد H نشان داده می شود. هیدروژن دارای 3 ایزوتوپ می باشد: (ایزوتوپ به ویژه هسته هایی گفته می شود که دارای عدد اتمی یکسان بوده ولی در تعداد نوترونها با هم فرق دارند)

 

 

1.       هیدروژن با نماد H و جرم اتمی یک که %98/99 این عنصر را تشکیل می دهد.

 

2.       دوتریم با نماد D و جرم اتمی دو، دومین ایزوتوپ عنصر هیدروژن می باشد که 02/0% فراوانی دارد.

 

3.    تریتیم با نماد T و جرم اتمی سه، تنها ایزوتوپ رادیو اکتیو هیدروژن است که در حالت طبیعی بسیار کم بوده، اما بطور مصنوعی از طریق واکنشهای مختلف هسته ای  در شتابدهنده ها و راکتورها تولید می شود که علت تهیه آن کاربردهای وسیع آن می باشد. تریتیم مانند هیدروژن بصورت دو مولکولی یعنی T2 می باشد و در شرایط عادی گازی شکل است. تفاوتهای T2 و H2 در جدول زیر نمایش داده شده است:

 

4.       

خواص

 H2 T2

 

نقطه ذوب (°C)

 20/259 -

 54/252 -

 

نقطه جوش در فشار یک اتمسفر(°C)

 77/252 -

 12/248 -

 

گرمای بخار (cal/mol)

 216

 333

 

گرمای تصعید (cal/mol)

 247

 393

 

 

 

از نظر شیمیایی، تریتیم مشابه هیدروژن عمل می کند، اما از آنجاییکه تریتیم جرم بزرگتری دارد، در بسیاری از واکنشها، خیلی کندتر از هیدروژن جایگزین می شود. با توجه به اینکه تریتیم یک رادیوایزوتوپ است (‌رادیوایزوتوپ به ایزوتوپهایی از عناصر گفته می شود که به علت ناپایدار بودن ساختار هسته ای از خود فوتون و ذرات مختلف گسیل می کنند) لذا با ساطع نمودن پرتوهای بتای منفی (تبدیل یک نوترون به پروتون) به   تبدیل می شود و در این فرآیند به هیچ وجه نشر اشعه گاما رخ نمی دهد. تریتیم ساطع کننده پرتو b با ماکزیمم انرژی kev 18 (کیلو الکترون ولت = kev) است که این ذرات b توسط لایه ای از هوا با ضخامت mm7 یا کاغذی با ضخامت mm 0.01 کاملاً متوقف می وشند. نیمه عمر فیزیکی تریتیم 12/3سال می باشد.

گاز تریتیم بطور طبیعی در هوا وجود دارد درحالت طبیعی بصورت گاز(بخار) بوده وقابلیت حل در آب را نیز دارد و به ازای هر 1018 اتم هیدروژن یک اتم تریتیم در اتمسفر وجود دارد که منشاء  تهیه طبیعی آن بطور عمده از بمباران نیتروژن در قسمتهای فوقانی اتمسفر توسط نوترون و پروتون حاصل از اشعه های کیهانی مانند واکنش ذیل منشاء می گیرد:

 

 

 

البته تریتیم عمدتا  به شکل بخار ترکیباتی از اکسیژن (DTO,HTO,….) در هوا وجود دارد.بعد از شروع ازمایشات سلاححهای هسته ای در سال 1954 غلظت این گاز رادیواکتیو در اتمسفر افزایش یافت بطوری که قبل از شورع این آزمایشات آب باران تقریباً شامل 1-10 اتم تریتیم در 1018  اتم هیدرژن بود که این مقدار اکنون به حدود 500 اتم تریتیم به ازای 1018  اتم هیدروژن افزایش یافته است. به علت کاربردهای وسیع این ماده رادیواکتیو برای تهیه آن از شتابدهنده ها و راکتورها از طریق واکنشهای مختلف استفاده می کنند.

اندازه گیری تریتیم موجود در هوا وتریتیم موجود درآب از لحاظ مسائل پرتوگیری ومحاسبه میزان آلودگیهای رادیواکتیو که از مهمترین عوامل مضراین مواد هستند بسیار حائز اهمیت می باشد و بسیاری از سازمانهای بین المللی که مرتبط با سلامتی افراد ومحیط زیست و مواد رادیواکتیو هستند برای اندازه گیری آن اقدام می کنندوقوانین بسیار زیادی را برای تمام مواد رادیواکتیو از لحاظ حد مجاز آنها در محیط (هواو آب و خاک و غیره)وضع کرده اند.بررسی، تهیه و کاربردهای تریتیم،خواص تریتیم ،سمیت تریتیم و اثرات آن (شامل اثرات بیولوژیکی و ژنتیکی) و ....بسیار گسترده و وسیع و خارج از موضوع این بحث است.البته بر روی این موارد تحقیقات بسیار وسیع در سطح بین المللی صورت گرفته که نتایج آنها موجود است.روشهای مختلف اندازه گیری تریتیم موجود در هوا و آب و اثار مختلف تریتیم نیز بصورت تئوری و کاربردی در سطح دنیا موجود است که از آنها استفاده می شود. امروزه برای اندازه گیری گازتریتیم درمحیط وبخصوص دراطرا ف نیروگاهها که غلظت این گازنسبتا زیاداست وممکن است برای پرسنل نیروگاهها خطرناک باشد دستگاههای پیشرفته ای وجود دارد که بااستفاده ازآنها درظرف چند دقیقه مقدارغلظت این گازدرمحیط مشخص می شود.اما اساس کارتمام این دستگاه بصورت مراحل مذکوراست.

 

روش کار :

 

 با توجه به مقدمه فوق و اهمیت اندازه گیری مواد رادیو اکتیو موجود در تمام محیط ها شامل هوا و آب و خاک و ... یک سری آزمایشات برای اندازه گیری مقدارگاز تریتیم موجود در هوا صورت گرفت که البته با توجه به خطای نسبتا زیاد این روش ولی در عین حال نتیجه قابل قبول آن، به شرح آن می پردازیم:

اساس این اندازه گیری برمبنای مکش وسپس حل گاز تریتیم موجود در هوا( که اغلب به صورت (DTO,HTO,…. درداخل آب و استفاده از روشهای متداول برای تعیین غلظت تریتیم موجود در آب است.

 همانگونه که قبلا نیز اشاره شد چون اغلب تریتیم موجود در هوا به صورت ترکیباتی مشابه بخار آب در هوا می باشند لذا این ترکیبات که اساسا هم خانواده با آب   H2O  می باشند در اثرعبور از آب در داخل آن حل می شوند.در واقع اگر به هر طریق دیگری هم بتوانیم بخار موجود در هوا را بصورت مایع در آوریم باید انتظار داشته باشیم که مقدار تریتیم موجود در هوا را از این طریق هم بتوانیم اندازه بگیریم.

شیوه انجام اندازه گیری بدین صورت است که در ابتدا با برقرار نمودن یک سیستم آزمایشگاهی شامل دو بابلرbubler)) و یک پمپ،شرایط  مکش هوا به داخل آب فراهم شد.بابلر اول که Degassing Vessel (ظرف حباب ساز) نام داردیک ظرف شیشه ای استوانه ای شکل کاملآ بسته با حجم cc 200  و شامل یک مسیر ورودی در بالا که هوای ورودی را مستقیمآ به انتهای ظرف هدایت و مسیر خروجی در کناره بالائی آن که هوای

خارج شده از آب را به طرف پمپ هدایت می کند .در انتهای لوله ورودی ظرف اول یک فیلتر شیشه ای(glass filter)قرار دارد که جهت ایجاد حباب بکارمی رود.هرچقدر که مش فیلتر (تعدادروزنه ها درواحد سطح)بیشتر باشد حبابهای ریزتری ایجادمی شود که در نتیجه گازهای(و بخارهای)موجوددر هوا در هنگام عبور از داخل آب بهتر حل می شوند به عبارتی احتمال حل شدن آنها افزایش می یابد.بابلر دوم که Security  vessel  (ظرف ایمنی) نام دارد نیز یک ظرف شیشه ای مشابه ظرف اول اما با طول لوله ورودی کوتاهتر و بدون فیلتر شیشه ای است که به منظور ایمن سازی سیستم به کار می رود.چنانچه در اثر مکش پمپ رطوبت یا آبی از ظرف اول خارج شود در داخل آن به دام می افتد و مانع آسیب رسیدن به پمپ می شود.مسیر ورود هوا با روشن شدن پمپ در شکل فوق نمایش داده شده است.پمپ مورد استفاده در این آزمایش یک پمپ کوچک مکش با فلوی (مقدار مکش هوا در واحد زمان) حداکثر   lit/min   1 است.

پس از برقراری سیستم فوق ابتدا در داخل ظرف اول مقدار cc 100آب مقطر می ریزیم. سپس پمپ را در فلوی  lit/min 0.5 تنظیم نموده  آن را روشن می کنیم و همزمان با روشن کردن زمان را نیز یادداشت می کنیم. هر چه مدت زمان مکش بیشتر شود حجم بیشتری از هوا از داخل آب عبور می کند که در نتیجه دقت آزمایش بیشتر می شود. البته رنج این مدت زمان باید در حدود چند روز به طور پیوسته باشد که از جمله عوامل خطا در این آزمایش گسسته و کم بودن زمان به علت محدودیت زمان کاری بوده است.پس از خاموش کردن پمپ می توان اظهار داشت که در حال حاضر آب مقطر داخل ظرف Degassing Vessel  ممکن است حاوی گازها و ذرات معلق مختلف موجود در هوا با ضرایب حلالیت مختلف در آب، باشند .

 اما با توجه به اینکه تنها گاز رادیو اکتیو بتا زا موجود در هوا تریتیم است لذا اندازه گیری آن مسیر مشخص خود را دارد و وجود احتمالی سایر موارد تاثیری بر اندازه گیری تریتیم ندارد.

در مرحله بعد از نمونه فوق به مقدار 2CC  به عنوان نمونه (ویال شماره 1 ) برداشته شده و در داخل یک ویال(ظرفهای استوانه ای شکل پلی اتیلنی با در پوش که جهت قرار دادن نمونه های مایع مواد شیمیایی به کار می رود) با حجم CC 20 ریخته می شود.چون قرار است نمونه فوق با یک آشکارساز مخصوص شمارش بتا  شمارش شود لذا CC 18 از مایع سنتیلاسیون (Liquid Scintillationn) به آن اضافه می کنیم. مایع سنتیلاسیون مایعی است که از مولکولهای بزرگ آلی شامل حلقه های فنیل و نفتالین و ...تشکیل شده است. این مایع غیر اکتیو است و کار آن به علت ساختا رشیمیایی جذب ذرات بتای گسیل شده از نمونه محلول در آن و در مقابل ساطع کردن فوتونهایی در ناحیه مرئی می باشد.علت انتخاب CC 18 مایع سنتیلاسیون و CC 2 نمونه استفاده از نتایج تحقیقات در این زمینه بوده است که با چنین نسبتی بهترین نتایج بدست آمده است.

پس از مخلوط کردن و بهم زدن کامل نمونه و مایع سنتیلاسیون ویال به مدت سه ساعت در تاریکی قرار داده شده و سپس توسط شمارنده فوق شمارش می شود.به جهت محاسبه مقدار خطای مراحل شمارش در یک ویال دیگر(ویال شماره2) و CC 2 از نمونه فوق به همراه CC 18  مایع سنتیلاسیون و 0.1 CC از نمونه استاندارد مایع رادیواکتیو تریتیم (tracer)را که اکتیویته آن مشخص است اضافه می کنیم وپس از بهم زدن کامل وقرار دادن به مدت سه ساعت در تاریکی ان راشمارش می کنیم که با این کار می توان مقدار خطای دستگاه شمارنده را با یک تناسب ساده از اختلاف نتایج نمونه های شماره1و2بدست آورد:

 

 

 

 

همچنین به منظور لحاظ کردن شمارش زمینه در ویال شماره(3) و CC 2  آب مقطر را به همراه و CC 18 مایع سنتیلاسیون قرار می دهیم و شمارش حاصل از این نمونه را به عنوان شمارش زمینه از مقدارشمارش نمونه شماره(1) کم می کنیم  .پس از تهیه نمونه های فوق آنها را در داخل آشکارساز شمارنده بتا قرار داده و هر نمونه 3بار وهر بار به مدت 60ثانیه شمارش می شود تا بامیانگین گیری برای هر نمونهتعداد شمارش در ثانیه محاسبه شود.با بدست آمدن نتایج میتوان غلظت تریتیم موجود در هوا را از رابطه زیر محاسبه کرد:

Ctr = (A-B)×V/uDtε  ± E

که در آن:

Ctr = غلظت تریتیم موجود در هوا بر حسب Bq/Lit

A = اکتیویته نمونه بر حسب Bq (تعداد شمارش های انجام شده در یک ثانیه)

B = شمارش زمینه در یک ثانیه

V = حجم کل نمونه آب مقطر برحسب CC

u = حجم نمونه برداشته شده جهت اندازه گیری (CC)

t = مدت زمان مکش پمپ بر حسب دقیقه

D = فلوی پمپ (مکش پمپ) بر حسب lit/min

ε=راندمان دستگاه شمارنده بتا(β)

E=مقدار خطا در اندازه گیری

 

 

در موارد فوق همانگونه که در تشریح عملکرد آمد مقدار V را CC 100 ،مقدارu را  و CC 2  و مدت زمان را 24ساعت قرار داده ایم که همانگونه که بیان شد این مدت زمان گسسته وکوتاه بود .مقدار(D)فلوی پمپ یعنی مقدار هوایی که در واحد زمان مکش می کند را نیز lit/min 5/0 تنظیم کردیم .مقدارeراندمان دستگاه از مشخصات دستگاه شمارنده است که از قبل تعیین شده است وبرای دستگاه مورد استفاده در این آزمایش %58/39 می باشد و E نیز باید مجموع تمام خطاههای موجود در آزمایش باشد که خطای گفته شده در مقدار شمارش یکی از موارد آنست وازسایر موارد چشمپوشی شده است که در محاسبات دقیقتر باید همه موارد لحاظ شوندهمچنین با توجه به اینکه بیشتر تریتیم موجود در هوا بصورت بخار DTO,HTO,…است لذا با عبور این ترکیبات ازداخل آب فرض شده است که تمام این مولکولها درآب حل می شوند که در واقع نیز به همین گونه است  البته ممکن است تمام تریتیم موجود در هوای عبوری از آب (بویژه T2) در داخل آن حل نشود وقسمتی از آن از آب خارج می شود.

رابطه فوق در واقع بر اساس پارمترهای موجود در این آزمایش نوشته شده است وممکن است رابطه کا ملی نباشد اما سعی براین است که تمام پارامترهای درگیردرآزمایش واردشوند.همانگونه که گفته شدچون این روش ا ندازه گیری به نوعی ا بتکا ری بوده است لذا ا نتظا رمی رود مقدارخطای حاصل نیززیاد باشد.

نتیجه:

نتایج اندازه گیریهای پیا پی ومیا نگین گیری ا زآ نها مقدارغلظت تریتیم موجود درهوای این آزمایشگاه را که به نوعی قسمتی ا زهوای محیط (شهر تهران) است د رحدود 8/2 × 10-5 Bq/mLit نشا ن داده است .که تقریبا دارای خطای نسبتا زیادی می باشد. براساس استا ندا ردهای جها نی ( EPA, DOE(U.S.A), ICRP ) ما کزیمم حد مجاز گازتریتیم درهوا می توا ند مقدار 3/7 × 10-3(Bq/mLit) باشد که مقدارفوق کمترازاین است بنا براین می توا ن گفت هوای این محیط ا زلحا ظ آلودگی به گازتریتیم یک هوای تمیزاست . نتایج برسی مقدارگازتریتیم درنقاط مختلف کشورهای جهان موجوداست که اکثرآنها درهوای عادی شهرهایشان که به دورازنقاط مختلف آ لودگیهای هسته ای باشد بطورمیانگین اعدادی دررنج 1/6 ± 0.05 × 10-7 (Bq/mLit) را بد ست آورده اند که این عدد با نتیجه بد ست آمده ازاین اندازه گیری قابل مقایسه است.همچنین بر اساس استاندارد DOE (Department Of Energy) که مربوط به قوانین حفاظت هسته ای آمریکا می باشد مقدارغلظت توصیه شده (DCG = Derived Concentration Guides) این گازدرهوا می بایست در حدود ( 1 x 10-4 mCi/L) 3/7 × 10-3 (Bq/mL) باشد.نتایج اندازه گیریها در ایالات متحده نشان می دهد که حداکثر غلظت این گاز در نواحی مختلف این ایالت درحدود 6 x 10-12 Ci/mL (2.6 x 10-7 Bq/mL of air) می باشد.

Refrencs:

 

1) Summary of results for the third quarter of 2002.the U.S. Department of Energy (DOE) and regulatory standards established by the U.S. Environmental Protection Agency (EPA) for protection of the public)

 

2) ICRP 1979, International Commission on Radiological Protection, Limits for Intake of Radionuclides by Workers, Publication 30, Part 1, Pergamon Press, Vol. 2, No. 3.

 

3) LLNL Environmental Report for 1996

 

(*) reza_gholipour2005@yahoo.com

 

منبع :www.hupaa.com

 

 

 



  • خرید اینترنتی | ماه موزیک